๐‹๐š๐ง๐ ๐ฎ๐š๐ ๐ž ๐Œ๐ž๐ž๐ญ๐ฌ ๐‹๐จ๐ ๐ข๐œ: ๐๐ƒ๐ƒ๐” ๐’๐œ๐ก๐จ๐ฅ๐š๐ซ ๐„๐ฑ๐š๐ฆ๐ข๐ง๐ž๐ฌ ๐ญ๐ก๐ž ๐‘๐จ๐ฅ๐ž ๐จ๐Ÿ ๐–๐จ๐ซ๐๐ฌ ๐ข๐ง ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐š๐ฅ ๐๐ซ๐จ๐จ๐Ÿ๐ฌ ๐š๐ญ ๐“๐ก๐š๐ข๐ฅ๐š๐ง๐ ๐‚๐จ๐ง๐Ÿ๐ž๐ซ๐ž๐ง๐œ๐ž

๐˜‰๐˜ข๐˜ฏ๐˜จ๐˜ฑ๐˜ฉ๐˜ญ๐˜ช ๐˜‹๐˜ช๐˜ด๐˜ต๐˜ณ๐˜ช๐˜ค๐˜ต, ๐˜š๐˜ข๐˜ฎ๐˜ถ๐˜ต๐˜ฑ๐˜ณ๐˜ข๐˜ฌ๐˜ข๐˜ณ๐˜ฏ, ๐˜›๐˜ฉ๐˜ข๐˜ช๐˜ญ๐˜ข๐˜ฏ๐˜ฅ โ€“ ๐˜‘๐˜ถ๐˜ญ๐˜บ 31, 2025

In the world of mathematics, proofs are often thought of as the ultimate test of logicโ€”symbols, equations, and structured reasoning coming together to demonstrate truth. But at the 12th ๐™ƒ๐™ช๐™–๐™˜๐™๐™ž๐™š๐™ฌ ๐˜พ๐™๐™–๐™ก๐™š๐™ง๐™ข๐™ฅ๐™ง๐™–๐™ ๐™ž๐™š๐™ฉ ๐™๐™ฃ๐™ž๐™ซ๐™š๐™ง๐™จ๐™ž๐™ฉ๐™ฎ (๐™ƒ๐˜พ๐™) ๐™„๐™ฃ๐™ฉ๐™š๐™ง๐™ฃ๐™–๐™ฉ๐™ž๐™ค๐™ฃ๐™–๐™ก ๐˜พ๐™ค๐™ฃ๐™›๐™š๐™ง๐™š๐™ฃ๐™˜๐™š in Thailand, ๐——๐—ฟ. ๐—Ÿ๐—ฒ๐—ผ๐—ป๐—ผ๐—ฟ๐—ฎ ๐—Ÿ. ๐— ๐—ถ๐—ป๐—ด๐—ผ of Notre Dame of Dadiangas University (NDDU) reminded the academic community that words, too, carry equal weight in the process.

Presenting her study, โ€œ๐™ˆ๐™–๐™ฉ๐™๐™š๐™ข๐™–๐™ฉ๐™ž๐™˜๐™–๐™ก ๐˜ผ๐™ง๐™œ๐™ช๐™ข๐™š๐™ฃ๐™ฉ๐™–๐™ฉ๐™ž๐™ค๐™ฃ ๐™–๐™ฃ๐™™ ๐™‹๐™š๐™ง๐™จ๐™ช๐™–๐™จ๐™ž๐™ค๐™ฃ: ๐™๐™๐™š ๐™‡๐™ž๐™ฃ๐™œ๐™ช๐™ž๐™จ๐™ฉ๐™ž๐™˜ ๐˜ฟ๐™ฎ๐™ฃ๐™–๐™ข๐™ž๐™˜๐™จ ๐™ž๐™ฃ ๐™‹๐™ง๐™ค๐™ค๐™› ๐˜พ๐™ค๐™ฃ๐™จ๐™ฉ๐™ง๐™ช๐™˜๐™ฉ๐™ž๐™ค๐™ฃ,โ€ co-authored with ๐——๐—ฟ. ๐—ฅ๐—ผ๐—ด๐—ฒ๐—ป ๐—”. ๐——๐—ผ๐—ฟ๐—ผ๐—ป๐—ถ๐—น๐—ฎ, Dr. Mingo explored how graduate students donโ€™t just prove with logicโ€”they persuade with language. The research examined twenty graduate-level proofs, combining corpus linguistics, axiomatic method analysis, and linguistic-content analysis to uncover how rhetoric and structure work hand in hand.

The findings revealed that while traditional proof methods such as direct proof, proof by contradiction, and biconditional proof remain staples, the subtler linguistic choices students make often shape how convincing a proof becomes. Natural language, according to the study, acts as a scaffoldโ€”helping frame assumptions, clarify reasoning, and guide logical flow. Features like discourse markers, conditional phrasing, and modal expressions provide the connective tissue that makes abstract reasoning accessible and persuasive.

Dr. Mingo stressed that persuasiveness in mathematics does not stop at correctness. A proof may be logically sound, but its ability to engage and convince rests in how clearly it communicates its reasoning. This perspective points to a more holistic approach to mathematics education, one that encourages reflective writing, genre-based instruction, and multimodal proof construction to strengthen both analytical sharpness and communicative clarity among graduate students.

Beyond its academic contribution, the study aligns with the global call for ๐™Ž๐™ช๐™จ๐™ฉ๐™–๐™ž๐™ฃ๐™–๐™—๐™ก๐™š ๐˜ฟ๐™š๐™ซ๐™š๐™ก๐™ค๐™ฅ๐™ข๐™š๐™ฃ๐™ฉ ๐™‚๐™ค๐™–๐™ก 4 (๐™Œ๐™ช๐™–๐™ก๐™ž๐™ฉ๐™ฎ ๐™€๐™™๐™ช๐™˜๐™–๐™ฉ๐™ž๐™ค๐™ฃ) by promoting pedagogical practices that integrate logic with language, ensuring that mathematics teaching equips learners not just with computational skill but with expressive and reasoning abilities vital for professional and academic success.

Her presentation was part of the NDDU delegationโ€™s contributions to the HCU International Conference, which carried the theme โ€œ๐™๐™š๐™จ๐™š๐™–๐™ง๐™˜๐™ ๐™ฉ๐™ค ๐™Ž๐™š๐™ง๐™ซ๐™š ๐™Ž๐™ค๐™˜๐™ž๐™š๐™ฉ๐™ฎ.โ€ In highlighting how language and mathematics intersect, Dr. Mingoโ€™s work underscored NDDUโ€™s commitment to bridging disciplines, advancing innovative educational research, and cultivating learning that is both rigorous and humane.

X